Link Prediction Based on Clustering Coefficient
نویسندگان
چکیده
منابع مشابه
Efficient Link Prediction with Node Clustering Coefficient
Predicting missing links in incomplete complex networks efficiently and accurately is still a challenging problem. The recently proposed CAR (Cannistrai-Alanis-Ravai) index shows the power of local link/triangle information in improving link-prediction accuracy. With the information of level-2 links, which are links between common-neighbors, most classical similarity indices can be improved. Ne...
متن کاملLink Prediction Based on Graph Topology: The Predictive Value of the Generalized Clustering Coefficient
Predicting linkages among data objects is a fundamental data mining task in various application domains, including recommender systems, information retrieval, automatic Web hyperlink generation, record linkage, and communication surveillance. In many contexts link prediction is entirely based on the linkage information itself (a prominent example is the collaborative filtering recommendation). ...
متن کاملLink Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملImproving local clustering based top-L link prediction methods via asymmetrical link clustering information
Networks can represent a wide range of complex systems, such as social, biological and technological systems. Link prediction is one of the most important problems in network analysis, and has attracted much research interest recently. Many link prediction methods have been proposed to solve this problem with various technics. We can note that clustering information plays an important role in s...
متن کاملClustering function: another view on clustering coefficient
Assuming that actors u and v have r common neighbors in a social network we are interested in how likely is that u and v are adjacent. This question is addressed by studying the collection of conditional probabilities, denoted cl(r), r = 0, 1, 2, . . . , that two randomly chosen actors of the social network are adjacent, given that they have r common neighbors. The function r → cl(r) describes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics
سال: 2014
ISSN: 2160-7567,2160-7575
DOI: 10.12677/app.2014.46014